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Resumen

Estas notas constituyen un anexo del trabajo previo de los autores [AB2]. Aqui
se incluye la demostracion del reciente resultado de Yuansi Chen [Ch|, en el que se
mejoran sustancialmente los resultados incluidos en [AB2], y que fue simultaneo a su
publicacion. Se siguen las pautas de la exposicion hecha por Bo’az Klartag en [K|, pero
manteniéndose dentro del esquema de demostracién utilizado en el anterior trabajo
[AB2].

Abstract
These notes constitute an annex to the previous work by the authors [AB2]. We
include here the proof of the recent result by Yuansi Chen [Ch|, in which the results
included in [AB2| are substantially improved, and which was simultaneous to its
publication. We follow the guidelines in the exposition made by Bo’az Klartag in [K],

but remaining inside the scheme of the proof used in our previous work [AB2].

1 Introduction

The Kannan-Lovasz-Simonovits (KLS) conjecture is a major open problem in asymptotic
geometric analysis, which concerns Cheeger-type isoperimetric inequalities for log-concave
probabilities, i.e., probabilities p on R” of the form du(z) = e V®dx, with V : R* —

(—00, 00| a convex function. It was posed in [KLS| and can be stated in the following way:
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Conjecture 1.1 (KLS spectral gap conjecture). There exists an absolute constant C' > 0

such that, for any log-concave probability p in R™

C

+ A -
N[

min{u(A), u(A9)}, for any Borel set A C R"

where e A
pt(A) = lim inf pA%) — u(4)

e—0 £

being A° = {a+xz:a € A, x| <e}, and ||Couv,||,p is the operator norm of the covariance

matriz of .

Given a log-concave probability measure @ on R", let us denote by v, the largest

constant such that

Yy
V HCOVMHOP

Let us also denote by 1,,, the infimum of the constants 1, when p runs over all log-concave

pt(A) > min{u(A), u(A°)} for any Borel set A C R".

probability measures on R". That is,
Y, = inf{¢, : p is a log-concave probability on R"}.

Therefore, the KLS conjecture asks about the existence of a positive absolute constant
C > 0 such that v,, > C for every n € N. Let us point out that it is well known that there
exists an absolute constant such that ¢, < C for every log-concave probability measure
and that the KLS conjecture and can be reduced to the setting of isotropic log-concave
probabilities, which are centered log-concave probabilities whose covariance matrix Cov,, is
the identity matrix.

In a recent article [AB2] in this journal, the authors presented FEldan’s localization
scheme and proved, in a unified framework, the two best known estimates for v, which had

been proved by Eldan [E] and Lee & Vempala [LV]. It can be stated in the following way:

Theorem 1.1. Let ), be the best constant such that for any isotropic log-concave probability

w1 in R™ the following isoperimetric inequality holds
p(A) >, min{u(A), u(A°)}  for any Borel set A C R".
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Then, there exists an absolute constant C' > 0 such that

C

min{o, logn, n1/4}’

UV =

where o, = \/Sup Eu“X| - \/ﬁ‘g and the sup runs over all isotropic log-concave random

vectors X in R™.

Simultaneously to the publication of [AB2|, Yuansi Chen improved the best known

estimate of 1,,, by proving the following theorem:

Theorem 1.2 (Y. Chen [ChL]). There exists absolute constants cy,co > 0 such that for any

1sotropic log-concave probability p in R™ the following isoperimetric inequality holds

pu(A) > cpexp ( — \/logn -loglog n) min{u(A), u(A%)}

for any Borel set A C R™.

This paper tries to be an Appendix to the aforementioned paper [AB2], in which we
include the proof of Chen’s estimate in the framework developed there. The proof that we
present here follows the original idea appearing in Eldan’s seminal paper [E| (see also [E2]
for an exposition of the technique). The same idea was also used by Lee & Vempala in their
approach |[LV] and also in our previous paper [AB2| . However the proof by [Ch| presents
some formal differences. Namely, he preferred taking expectations in the isoperimetric
inequalities rather than controlling how the measure of the individual 1/2-Borel sets evolves
throughout Eldan’s stochastical localization scheme. In order to get Chen’s result we mimic
the method used by Klartag [K|, which uses a stopping time argument instead of the original
reiteration method by Chen.

2 Preliminary results

We will follow the framework developed in [AB2], which we recall here in order to improve
the readability of this annex. Nevertheless, we refer the reader to [AB2| for more detailed

explanations.
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2.1 A first reduction

We already mentioned in the introduction that one can just consider isotropic log-concave
probability measures. It was also showed in [AB2] that it is enough to prove Conjecture
for isotropic log-concave measures with compact support. This condition ensured the
existence and uniqueness of solution on the system of stochastic differential equations con-
sidered in the proof (see below). One can reduce the class of isotropic log-concave
probability measures to consider even further, by also assuming that their supports are
contained in a Euclidean ball r, BY of some large (but not “too large”) radius r,,. We state

it in the following lemma:

Lemma 2.1. There exists an absolute constant C' > 0 such that if for every isotropic

log-concave probability measure p with supppu C Cn®BY we have that
Y > Cn,

for some C,, > 0, then, we have that

where ¢ is an absolute constant.
Proof. Let du(x) = e~V®@dx be an isotropic log-concave probability measure on R” and let

eV X sy () da

Joomg &/ @

dpy =

Notice that, by Paouris’ inequality [BGVV], Theorem 5.2.1|, there exists an absolute
constant ¢ > 0 such that

5

/ eV @dr = p{z e R™ : |z| > n°} < e,
R™\n® BY

Notice also that for any 6 € S"~!, by Holder’s inequality and by Borell’s inequality, (see
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IBGVV] Theorem 2.4.6])

1/2 12
/ (,0)2e”V@dz < / eV @y </ (x, 9>4e_v(””)dx) < Cre
R™\n® BY R"\n5BJ n

Therefore, for every § € S !

A<1-Cre™™ < E,.(X,0)* < ﬁ < B,
where A, B are positive absolute constants and then A < ||Cov, ||, < B. Thus, if we
take T € GL(n) such that dus(z) = dpy(Tx), we have that supp us C Cn®BY, where C
is an absolute constant. By hypothesis, for this absolute constant C' we can ensure that
Y, > O, and, consequently, 1, > C,,.
For every integrable locally Lipschitz function g : R” — R such that E,g = 0 we have
that

Busl [ Ve =By Byl [ Vo
n> By

5 RN
n° BY

| [ swere) (1- / I L |
n®BY n5BY R7\n®BY n5BY
1/2
S (Equ)l/Q x)dl' —V(JE) + / e—V(x) / e_v(x)d:p
TL5 Bn R" \nb By R™\n? By TL5B£L

Cn

< (Eu92)1/2[ o +€_§n < 272" ( ud )1/2 —26_%"5(Varug)1/2.

and

1/2
/ lg(2)|e”V@dx < (/ e_v(””)dx) (Varug)l/2 <e (Varug)l/Q.
R7\n5BY R™\n5 By

Therefore, taking into account the relation between Cheeger-type isoperimetric inequali-
ties and Poincaré-type inequalities, and the equivalence between the constants in different

Poincaré-type inequalities (see, for instance, [ABI Theorem 1.11]), we have that for every
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integrable locally Lipschitz function g : R" — R such that E,g =0

ol =Elol [, eV Odne [ gta)le s

<Eulg-Bugl [ ot Bugl [ eVdat [ jgae VO
n5B§L nb Bé‘ R”\n5 Bg
< i]EM1 V| e V@ dy 4 25" (Var,g)'/* + o—cn® (\/‘alf,ig)l/2
%1 ndBY
c c c Co e
< —1]EM|Vg| e V@ dy 4 3¢5 (Vaurug)l/2 < —1]EM|Vg| 4+ Zema" (]EM|Vg|2)1/2 .
7%1 ndBY w;u w,u

Since by Lee & Vempala’s result and the fact that ¢, is bounded from above by an absolute

constant, there exist absolute constants such that

Co _cp5 _c,5
—ZeT2" < ggntteTim <y <

K 238

Cs

and then, for every integrable locally Lipschitz function g : R — R such that E,g = 0,

Ce

E.lg] <
! Vi

11V 3llle-

Therefore, since for every integrable locally Lipschitz function g : R® — R we have that
g1 = g—E, g verifies that E,g; = 0 and Vg, = Vg, we have that for every integrable locally
Lipschitz function g : R — R

Ce
Eulg —E.g| <

11V 3llle-

M1

Thus,
¢u Z C?’QZ};H Z C7Cn~

]

Remark 2.2. Let us point out that the same proof would work with any power of n larger

1, 5
than 5 instead of n°.
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2.2 The general strategy

From now on, we will consider du(z) = f(z)dz to be an isotropic log-concave probability
measure such that supp u € Cn®BY where C is the absolute constant in Lemma . Let
us recall that we consider Lee & Vempala’s choice in the system of stochastic differential

equations in Eldan’s localization scheme. That is,
(2) dCt = btdt + th, Co = 0

where W, a n-dimensional Wiener process and b, is the barycenter of the density f;(x) given
by

€<Ct7$>_%‘x|2f(x)
f]R" 6<Ct7x>7%‘w|2f($)dm

(3) fi(x) = by = /n zfi(z)d.

The probability measure with density f;(x) will be denoted by p, and its covariance matrix
will be denoted by A;.

Let us recall that, given p an isotropic log-concave probability, our goal is to find two
values ©,C > 0 such that for any Borel set £ C R"™ with u(E) = 1/2.

wE°\E)>C,

where E® = {e+ 2 € R" : e € E,|z| < O} is the O-dilation of E, in order to apply the

following proposition, which can be found on [AB2, Proposition 2.3]:

Proposition 2.3 ([M]). Let p be a log-concave probability on R™. Assume that there exist
two positive numbers ©,C' > 0 such that

WEC\E)>C

for any Borel set E € R™ such that @(E) = % Then,

pt(A) > g min{p(A), n(A°)} for any Borel set A C R".

In order to control the probability of dilations of Borel sets, the following concentration

results for more log-concave than Gaussian probabilities (see [AB2, Proposition 2.4|) can
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be applied

Proposition 2.4. Let ¢ be a convex function ¢ : R™ — R and let t > 0. Assume that
dp(x) = e=®@) =317 gg.

1s a centered probability on R™. Then for every Borel set A C R™ such that

1
10

9

< A) <
< )_10

we have
It (A%) > ﬂ,
100
where D > 0 s a suitably chosen absolute constant independent of every other parameter

and APV is the D /\/t-dilation of A.
Remark 2.5. Notice that, due to the fact that

elevn)=slel® £(2)dy
o T )

dp(z) =

1s more log-concave than the Gaussian probability, as a trivial application of both proposi-
tions,

i (A) > erv/tmin{ g (A), (A€}, for any Borel set A C R",
where, a fortiori, 0 < ¢y < 1 is an absolute constant.

In the sequel E will denote a fixed Borel set in R™ such that pu(F) = 1/2. We introduce

the stochastic process

95(t) = g(t) = pu(E) = /E fux)dz, >0,

where p; and f;(x) are defined by the system of stochastic differential equations and by
(3). It is obvious that g(0) = 1/2, Yw € €, since fo(z) = f(x) for every w € Q. Besides,
(g(t))i>0 is a martingale (see [AB2, Section 4|) and for every ¢ > 0 the expected value of

g(t) is Epg(t) = 1/2.
Let T > 0 be a time to be precised later and notice that for any © > 0, since also
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(gpe\p(t))i>0 is a martingale,

W(E°\E) = [

E

=Ep /@\ fr(z)dr = Epup(E® \ E).

f(x)dx = / Ep fr(z)dx
O\E EO\E

In order to apply the preceding propositions we will consider the event
G={weQ:|g(T)—1/2| < 1/4}.

By Proposition and the way that the densities f; are defined, we will have that there
exists some absolute constant D > 0 such that for w € G we will have pr(EP/ ‘/T) > 0.95
and therefore, by Markov’s inequality,

p(EPVT\ E) = Bppr(EP/YT\ E) > (0.95 — 0.5)P(G) = 2% P(G).

Hence, if we find T, C; > 0 independent of F such that P(G) > C; then we will get that

ut(A) > Cll\)/Tmin{,u(A),,u(Ac)} VA Borel set C R".

2.3  Estimating the probability of G

In order to bound from below P{|g(T) — 1/2| < 1/4} by a positive absolute constant, for

a particular choice of a time 7', we recall that, as obtained in [AB2], Section 4],
1 T T
oT) = 5 =alT) = g0) = [ dgte) = [ (n,awi)
0 0

where n; = / fi(z)(x — by)dx, being f; the density of the probability measure p; defined
E

in .
The function g(t) is a martingale and so, by Dambis, Dubins-Schwarz theorem, [AB2]

Proposition 2.7], we have that in distribution

9(T) — g(0) = W,
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where W, is a Wiener process and [g]r is the quadratic variation of g, which is,

T
[g]T=/ ||t
0

Hence, for any M > 0,

0<t<M 4

PAlo(T) — 1/21 > 1/4) = Py > 1/4) < Plgle > M} + P { g [ 1] > 1}

We will bound both summands from above for an appropriate choice of M. Taking into

account that for every t > 0

1| = <?7t,%> = /Eft(x) <(x —by), %>d:p

T
gl < / 1AL, dt

we have that

and then
0 Pl > ) <B{ [ At > ).

On the other hand, (—Wt) i>o 18 also a Brownian motion and then, by the reflection

principle, [AB2, Proposition 2.6, we have

_ 1 - 1 - 1
P{ max |Wy| > —} SIP’{ max W, > —}+P{ max —W, > —}
(5) 0<t<M 4 0<t<M 4 0<t<M 4
_ 1 1
= 4P — v <4 .
{WM> 4} < exp( 32M)

Hence

P{|g(T) —1/2| > 1/4} < p{/OT 1A, dt > M} + dexp (‘32%\4) .
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Our purpose is to find a suitable M > 0 and 7" > 0 such that we can ensure that
the latter upper bound on the probability of G¢ is strictly smaller than 1. We will take
M =1/256. Then

]mman—um>1m}gP{A|mmwﬁ>§%}+4mpe@

and, by showing that for an appropriate choice of T' the latter probability is bounded above

by 1—10, we will obtain the desired lower bound on the probability of G.

3 Chen’s estimate on ||A;||,p

Let us recall that the main result, which allowed to obtain Theorem by following the

described strategy, was the following:

Proposition 3.1. [AB2, Proposition 5.1] Given the system of stochastic differential equa-
tions , let Ay be the covariance matriz of the measure j; defined by . Let p > 2 be an
integer. Then

d(Tr(AY)) = 6;dt + (v, dWV;)

where 0; is an adapted, with bounded variation process, such that

5, <1 Cro log n Tr(A?)5, ifp >3
— oAy, ifp=2

and
vy < CpTH( A5 Wp>2,

where C > 0 is an absolute constant and o2 = sup E}|X| — \/ﬁ}z and the sup runs over all

1sotropic log-concave random vectors in R™.

In this section we present Chen’s improvement on Proposition [3.1] and some conse-

quences on the estimates of || A¢||op-

Proposition 3.2. Given the system of stochastic differential equations , let A; be the
covariance matrix of the measure pu; defined by . Let p > 3 be an integer. Then

d(Tr(AD)) = 8,dt + (v, dW,)
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where 0, is an adapted, with bounded variation process, such that

1 || A, 1
b T min {1 g Ll < O,
where C' > 0 is an absolute constant and 1, is defined as in Theorem [1.1]

Proof. The estimate for |v;| is the same appearing in Proposition We will follow the
ideas appearing in K| in order to estimate J;. Let us recall that, after Lee & Vempala’s
result collected in Theorem , we know that 1, > nl% for some absolute constant C' and
that one trivially has v,, < C for another absolute constant C'.

According to the proof of Proposition [3.1]

n

o < %p(p DY (aa)PlElP + Y () (o) Rl

i=1 i
0<k<p—2
1 . _ _
< ip(P - 1) Z(Oén')p 2|§z‘z’|2 +2 Z (cii)? 2|§z‘j|2
i=1 7
0<k<p—2
<plp—1)D ()&l +plp— 1) D () (&)
i=1 i<j
<plp—1) Y ()16
ij—1

where (v;)I; is an orthonormal basis of eigenvectors of the covariance matrix A;, o;; =
a;j(t) = (Aw;,v;), ordered in such a way that a;y > qgs > -+ > gy, and §;; are the
vectors &; = & () = E, (@ — b, v;) (@ — by, v;) (x — by) € R™

Let, for any 1 <17 < n, & be the symmetric matrix
& =E, (x—b,v)(x—b) @ (x — by).

Then,
Te(&]) = Y (Bplw — by, i) (@ — by, vy) (@ = b, ok)* = Y J1
j=1
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Therefore,

o <plp—1) Z(O‘ii)p_2Tr(§z‘2)'

=1

Furthermore, since
512 = gl O ]Eut<£[) — bt7 U,L>(l' — bt) ® (ZU — bt) = ]E’Mt <£C — bt,/Ui>(.fC — bt) ® 52(1) — bt)
and, for every 1 <7 <n, E,, (z — b, v;) = 0 we have that

Tr(&f) = By (@ — be, vi) (@ — b, &z — by))
= B (= b, 0i) ((& = by, & = b)) = By, {y — by, &i(y — br)))
< (by Cauchy-Schwarz inequality)

< Vi Var,, (@ = b, &l = b)),

Taking into account the well-known relationship of Cheeger-type isoperimetric inequalities
with Poincare’s inequality (see, for instance, [ABI, Theorems 1.1 and 1.8]) we have that

for any locally Lipschitz integrable function g and any log-concave probability p in R”

CHCOVuHop
Y2

for some absolute constant C' > 0. Besides, by Remark for any locally Lipschitz

Var,g < E#|Vg\2

integrable function ¢

C
Varﬂt (g) < ?Eltt |Vg|2

Therefore,

L Ao
Va, (b — ) < Comin { 7, 1l

}Em V(@ — b sz — B

Since

Viz —b,&i(x— b)) = (& + &) (@ —by) = 2&(x — by),
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we have that

( ) < C’\/a_u\/mm 1, uel&i(x — by) |?
< o\/a—u\/mm L wg p}\/Tr<At£3)-

Hence,

S 2Tr<£>sc\/mm{%,—“f;'2'°p} o2\ T4,

=1

IN

(by Cauchy-Schwarz inequality)

< C\/min { 1’ ”AtHop} Z “\ iafigTr(Até?)
i=1

C\/min{%,%} Tr(A}) Zap STr(A£2).

Now, since the matrix A, is diagonal in the basis (v;)7_, and the entry (£7);; of the

matrix &2 is

n

(€)= (B, (a — by vi){z — by, v) (& — b, u))* = €512,

k=1

we have that

n
-3 2
Z ag; Tr(A Z o a]] Z a; O‘J3|§zy‘
=1 3,j=1 4,j=1
For every 1 < 7, j < n we have that ozfi_?’ozjj < max{ozfi , ” } < al; 24 ozp . Thus,

Zap ?’TrAff)giaZQ\fijP—l—ia |£”\2—2204 ]5”\2—220/’ Tr(€:

ij=1 ij=1 ij=1
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and then

Z(Ozu)p 2Tr(¢?) < C\/min{%, ”é;#} Zap *Tr(£2

i=1

where C' is an absolute constant. Therefore,

n

Z(a”)p >Tr(£?) < C'min {1, m} Tr(AY)

P t Y;
and .
50 lp =) Yl THE) < Comin | 7 1 ),
where C' is an absolute constant. ]

Proposition 3.3. There exists an absolute constant ¢ > 0 and ng € N such that if Ty =

2
U , then for every p > 3 and every n > ng, we have
logn
max JEPHAtHOp <3 and max Ep( Tr(AP))YP < 3n'/P,
te[0,T t€[0,To]

Proof. First of all notice that, since 1), is bounded from above by an absolute constant, we

01@/)2

102C Tog 120 loan’ where C' is the constant

can choose an absolute 0 < ¢; < 1/2 and take Ty :=
appearing in Proposition (3.2}

Let us consider the stopping time 7(w) = inf {t > 0; || Aelop > 2}. It is clear that, by
continuity, for w € Q and t < 7(w), || Atllop < 2. We define the following stochastic process

Xi(w) = Tr(A? jy)- It is an Ito process. Indeed, dX; = Sidt + (v, dW;) where

min{¢,7(w

{(x if + < 7(w) ) {vt if ¢ < 7(w)
;= and 7, =

0, otherwise 0, otherwise .

If0<t<7(w),

8 =6, < Cp? ETr(Ap) Cp? ¢2

Since the latter inequality is trivially true if ¢ > 7(w) we have that it holds for every ¢ > 0.
It is clear that the stochastic process given by 7, = fot (vs,dWs) is a martingale and
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then EpZ; = 0. Hence the deterministic function EpX, verifies

d 2
%EPXt < Cp I/J—EPXt, a.e. t>0.

n

Then, taking into account that EpX, = n and that 0 < ¢; < 1, we have that for every

2
t € [0,To)

2Cp2 p2
EpX; < nexp ( 02 Tg) < nexp (m

n

Optimizing for p = [40logn] we obtain
EpX, < nexp(logn) = n? vt € [0, Tp).
Therefore, since for this value of p and n > 3

Xr(w) _ Tr(A[4010gn) > ||AT @) ||3010gn _ 23010gn Vi e [O,TO]

(W)

we achieve, using Markov’s inequality, that for every ¢ € [0, Tp]

n? > EpX, > / X, dP = / X (wydP > 2301°g”IP{w > T(w)}
{w:t>7(w)} {w:t>7(w)}

and then

7’L2

T(w)} < n30log2’

Plw :t> vt € [0, Tp).

Then, for every n > ng, for some nyg € N

12

Ep | Alop < +2<3 Vel Ty,

& ) 130log 2

where we have used that, since we are assuming (as mentioned in Section [2.2)) that suppu C
Cn°By,

| Atllop = sUp E,,, (x — by, 0)* < 4(diameter(supp Mt))2 = 4(diameter(supp ,u))2 < Cyn'?
0
Besides, since for any p > 3,
1/
[ Allop < (Tr(AD)) " < [|Aflopn”
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we have that
Ep(Tr(AD)) " < 307 vt e[0,Ty).

O

2
Lemma 3.4. Let Ty = clwn as in Propositiong. LetT1,T5 > 0 be such that 0 < T < Ty
ogn

and 0 < Ty <T;. Then, for every p > 3 and n > ngy, for some ng € N, we have that

Ty 1
P Afllopdt > — 3 < 1536 T
{/ 1A, _512}_ 1

Ts 1 Y T2 Cp
P Allodt > — b < 153607 (22) T,
([ e (2)

Proof. By Markov’s inequality, since T < Ty and, as seen in Proposition ’ Ep[|Allop < 3
for every t € [0, Tp],

and

T 1 Ty Ty
IED{/ | A |opdt > 5@} < 512Ep/ 1A |opdt = 512/ Ep| As|lopdt < 153671
0 0 0

Consider the stochastic process H, = (Tr(AY))"/? which is an It6 process. Therefore,

by 1t6’s formula,

1

P\\1/p—1 p 1 1 p\\1/p—2 p —
dH, = 5(Tr(At)) / d(Tr(At)) + 2_p (— — 1) (TY(A,:)) / d[Tr(A7))e = medt + d M,

p

where, by Proposition [3.2] dM, is a martingale with My = 0 and 7, is an adapted process
such that 1, < C?H,. Taking expectation we have

d

d
—EeH, < C 7% EeH, ¢ - log (EzH,) < C

|3

Integrating in the interval [T}, ¢] C [T1, T3] we deduce that for any T} < ¢t < T

£\
EpH: < EpHrp, (T) .
1

Taking into account that, by Proposition , EpHy, < 3n'/P, for any value of p > 3, we
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obtain

To Ts To To t Cp T2 Cp

Ee | ||Adlopdt <Ep | Hydt = / EpH,dt < 3n'/? / <—> dt < 3nl/? (—) Ts.
T T T T 1 T

Hence, by Markov’s inequality,

T 1 T> Ty Cp
1@{/ | Adllopdt > 53} < 512]EP/ | Aullopdt < 1536017 <?> T,

To T 1

4 Proof of Chen’s Theorem

In this section we complete the proof of Chen’s estimate of 1,,.

2

Proof of Theorem[1.3. Let Ty = ¢ ] ¥n for some absolute constant ¢, as in Proposition
ogn

1 N T
and let T7 =T, p = ﬂ, and 7o = an P<CIIJ+1>TOC”+1 for this fixed value of p and
log logn
some 0 < a < 1 to be precised later.

There are two possibilities: either To < Ty or Ty > Ty. Assume first that T, < Tj.

According to Lemma and taking into account that 1, < C' for some positive absolute

constant C', we have that

T2 1 T2 1
P Afllopdt > — ¢ < P Allopdt > — » < 1536 T:
L e = s b <2 [ a5} < 1530,
1

1536¢y)2
e <
logn — 10

< 15367 <

for every n > ng, for some ng € N.

Assume now that T, > Tj. By Lemma [3.4] and taking into account that 1 4+ x < 2x
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whenever z > 1, we have

T 1 To 1 T 1
P Afllopdt > — » <P Agllopdt > — P Ayllopdt > —=
{1t > 55 < Bd [ 1l > o5 b2 [ e > 55
7"2 Cp T2 Cp+1
<1536 (To+n'/P (2] Ty, |=1536Tp (1 +n'/7 | =
TO TO

; Cp+1 1

<3072Tyn'? (= = 3072 < —

= or (To) “ 10

whenever n > nq, for some n; € N, by choosing 0 < o < 1 small enough.

Therefore, we can fix 0 < a < 1 such that there exists ng such that if n > ng

E 1 1 1
P wdt > — b < =

By the arguments exposed in Section [2) we have that there exists an absolute constant
c1 > 0 such that

Cp
Cp+1

. 1 _Cp . 1 n
U > 1/ Ty > cav/an” wERD T = cgy/an™ @) ———7—.
(log n)2C»+D

Since this inequality is true for any isotropic log-concave probability whose support is
contained in Cn°BY, where C| is the absolute constant in Lemma , we obtain that

Cp
Cp+1
n

1
wn > 64\/571 2p(Cp+1) o
(log n)m

and then

1

Un > (04\/5)Cp+1 Lﬁp@ = c5exp ( — ¢g\/logn - loglogn),

(log n)
which finishes the proof. m
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