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Resumen

Estas notas constituyen un anexo del trabajo previo de los autores [AB2]. Aquí

se incluye la demostración del reciente resultado de Yuansi Chen [Ch], en el que se

mejoran sustancialmente los resultados incluidos en [AB2], y que fue simultaneo a su

publicación. Se siguen las pautas de la exposición hecha por Bo’az Klartag en [K], pero

manteniéndose dentro del esquema de demostración utilizado en el anterior trabajo

[AB2].

Abstract

These notes constitute an annex to the previous work by the authors [AB2]. We

include here the proof of the recent result by Yuansi Chen [Ch], in which the results

included in [AB2] are substantially improved, and which was simultaneous to its

publication. We follow the guidelines in the exposition made by Bo’az Klartag in [K],

but remaining inside the scheme of the proof used in our previous work [AB2].

1 Introduction

The Kannan-Lovász-Simonovits (KLS) conjecture is a major open problem in asymptotic
geometric analysis, which concerns Cheeger-type isoperimetric inequalities for log-concave
probabilities, i.e., probabilities µ on Rn of the form dµ(x) = e−V (x)dx, with V : Rn →
(−∞,∞] a convex function. It was posed in [KLS] and can be stated in the following way:
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Conjecture 1.1 (KLS spectral gap conjecture). There exists an absolute constant C > 0

such that, for any log-concave probability µ in Rn

(1) µ+(A) ≥ C√
‖Covµ‖op

min{µ(A), µ(Ac)}, for any Borel set A ⊂ Rn

where
µ+(A) = lim inf

ε→0

µ(Aε)− µ(A)

ε
,

being Aε = {a + x : a ∈ A, |x| < ε}, and ‖Covµ‖op is the operator norm of the covariance
matrix of µ.

Given a log-concave probability measure µ on Rn, let us denote by ψµ the largest
constant such that

µ+(A) ≥ ψµ√
‖Covµ‖op

min{µ(A), µ(Ac)} for any Borel set A ⊂ Rn.

Let us also denote by ψn, the infimum of the constants ψµ when µ runs over all log-concave
probability measures on Rn. That is,

ψn = inf{ψµ : µ is a log-concave probability on Rn}.

Therefore, the KLS conjecture asks about the existence of a positive absolute constant
C > 0 such that ψn ≥ C for every n ∈ N. Let us point out that it is well known that there
exists an absolute constant such that ψµ ≤ C for every log-concave probability measure
and that the KLS conjecture and can be reduced to the setting of isotropic log-concave
probabilities, which are centered log-concave probabilities whose covariance matrix Covµ is
the identity matrix.

In a recent article [AB2] in this journal, the authors presented Eldan’s localization
scheme and proved, in a unified framework, the two best known estimates for ψn which had
been proved by Eldan [E] and Lee & Vempala [LV]. It can be stated in the following way:

Theorem 1.1. Let ψn be the best constant such that for any isotropic log-concave probability
µ in Rn the following isoperimetric inequality holds

µ+(A) ≥ ψn min{µ(A), µ(Ac)} for any Borel set A ⊆ Rn.

138



Then, there exists an absolute constant C > 0 such that

ψn ≥
C

min{σn log n, n1/4}
,

where σn =
√

supEµ
∣∣|X| − √n∣∣2 and the sup runs over all isotropic log-concave random

vectors X in Rn.

Simultaneously to the publication of [AB2], Yuansi Chen improved the best known
estimate of ψn, by proving the following theorem:

Theorem 1.2 (Y. Chen [Ch]). There exists absolute constants c1, c2 > 0 such that for any
isotropic log-concave probability µ in Rn the following isoperimetric inequality holds

µ+(A) ≥ c1 exp
(
− c2

√
log n · log log n

)
min{µ(A), µ(Ac)}

for any Borel set A ⊆ Rn.

This paper tries to be an Appendix to the aforementioned paper [AB2], in which we
include the proof of Chen’s estimate in the framework developed there. The proof that we
present here follows the original idea appearing in Eldan’s seminal paper [E] (see also [E2]
for an exposition of the technique). The same idea was also used by Lee & Vempala in their
approach [LV] and also in our previous paper [AB2] . However the proof by [Ch] presents
some formal differences. Namely, he preferred taking expectations in the isoperimetric
inequalities rather than controlling how the measure of the individual 1/2-Borel sets evolves
throughout Eldan’s stochastical localization scheme. In order to get Chen’s result we mimic
the method used by Klartag [K], which uses a stopping time argument instead of the original
reiteration method by Chen.

2 Preliminary results

We will follow the framework developed in [AB2], which we recall here in order to improve
the readability of this annex. Nevertheless, we refer the reader to [AB2] for more detailed
explanations.
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2.1 A first reduction

We already mentioned in the introduction that one can just consider isotropic log-concave
probability measures. It was also showed in [AB2] that it is enough to prove Conjecture
1.1 for isotropic log-concave measures with compact support. This condition ensured the
existence and uniqueness of solution on the system of stochastic differential equations con-
sidered in the proof (see (2) below). One can reduce the class of isotropic log-concave
probability measures to consider even further, by also assuming that their supports are
contained in a Euclidean ball rnBn

2 of some large (but not “too large”) radius rn. We state
it in the following lemma:

Lemma 2.1. There exists an absolute constant C > 0 such that if for every isotropic
log-concave probability measure µ with suppµ ⊆ Cn5Bn

2 we have that

ψµ ≥ Cn,

for some Cn > 0, then, we have that

ψn ≥ cCn,

where c is an absolute constant.

Proof. Let dµ(x) = e−V (x)dx be an isotropic log-concave probability measure on Rn and let

dµ1 =
e−V (x)χn5Bn

2
(x)dx∫

n5Bn
2
e−V (x)dx

.

Notice that, by Paouris’ inequality [BGVV, Theorem 5.2.1], there exists an absolute
constant c > 0 such that∫

Rn\n5Bn
2

e−V (x)dx = µ{x ∈ Rn : |x| ≥ n5} ≤ e−cn
5

.

Notice also that for any θ ∈ Sn−1, by Hölder’s inequality and by Borell’s inequality, (see
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[BGVV, Theorem 2.4.6])

∫
Rn\n5Bn

2

〈x, θ〉2e−V (x)dx ≤

(∫
Rn\n5Bn

2

e−V (x)dx

)1/2(∫
Rn

〈x, θ〉4e−V (x)dx

)1/2

≤ C1e
−cn5

.

Therefore, for every θ ∈ Sn−1

A ≤ 1− C1e
−cn5 ≤ Eµ1〈X, θ〉2 ≤

1

1− e−cn5 ≤ B,

where A,B are positive absolute constants and then A ≤ ‖Covµ1‖op ≤ B. Thus, if we
take T ∈ GL(n) such that dµ2(x) = dµ1(Tx), we have that supp µ2 ⊆ Cn5Bn

2 , where C
is an absolute constant. By hypothesis, for this absolute constant C we can ensure that
ψµ2 ≥ Cn and, consequently, ψµ1 ≥ Cn.

For every integrable locally Lipschitz function g : Rn → R such that Eµg = 0 we have
that

|Eµ1g|
∫
n5Bn

2

e−V (x)dx = |Eµ1g − Eµg|
∫
n5Bn

2

e−V (x)dx

=

∣∣∣∣∣
(∫

n5Bn
2

g(x)e−V (x)

)(
1−

∫
n5Bn

2

e−V (x)dx

)
−

(∫
Rn\n5Bn

2

g(x)e−V (x)dx

)(∫
n5Bn

2

e−V (x)dx

)∣∣∣∣∣
≤(Eµg2)1/2

(∫
n5Bn

2

e−V (x)dx

)1/2(∫
Rn\n5Bn

2

e−V (x)

)
+

(∫
Rn\n5Bn

2

e−V (x)

)1/2(∫
n5Bn

2

e−V (x)dx

)
≤ (Eµg2)1/2

[
e−cn

5

+ e−
c
2
n5
]
≤ 2e−

c
2
n5

(Eµg2)1/2 = 2e−
c
2
n5

(Varµg)1/2.

and

∫
Rn\n5Bn

2

|g(x)|e−V (x)dx ≤

(∫
Rn\n5Bn

2

e−V (x)dx

)1/2

(Varµg)1/2 ≤ e−cn
5

(Varµg)1/2 .

Therefore, taking into account the relation between Cheeger-type isoperimetric inequali-
ties and Poincaré-type inequalities, and the equivalence between the constants in different
Poincaré-type inequalities (see, for instance, [AB1, Theorem 1.11]), we have that for every
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integrable locally Lipschitz function g : Rn → R such that Eµg = 0

Eµ|g| = Eµ1|g|
∫
n5Bn

2

e−V (x)dx+

∫
Rn\n5Bn

2

|g(x)|e−V (x)dx

≤ Eµ1 |g − Eµ1g|
∫
n5Bn

2

e−V (x)dx+ |Eµ1g|
∫
n5Bn

2

e−V (x)dx+

∫
Rn\n5Bn

2

|g(x)|e−V (x)dx

≤ c1

ψµ1

Eµ1|∇g|
∫
n5Bn

2

e−V (x)dx+ 2e−
c
2
n5

(Varµg)1/2 + e−cn
5

(Varµg)1/2

≤ c1

ψµ1

Eµ1|∇g|
∫
n5Bn

2

e−V (x)dx+ 3e−
c
2
n5

(Varµg)1/2 ≤ c1

ψµ1

Eµ|∇g|+
c2

ψµ
e−

c
2
n5 (Eµ|∇g|2)1/2

.

Since by Lee & Vempala’s result and the fact that ψµ is bounded from above by an absolute
constant, there exist absolute constants such that

c2

ψµ
e−

c
2
n5 ≤ c3n

1/4e−
c
2
n5 ≤ c4 ≤

c5

ψµ1

and then, for every integrable locally Lipschitz function g : Rn → R such that Eµg = 0,

Eµ|g| ≤
c6

ψµ1

‖|∇g|‖∞.

Therefore, since for every integrable locally Lipschitz function g : Rn → R we have that
g1 = g−Eµg verifies that Eµg1 = 0 and ∇g1 = ∇g, we have that for every integrable locally
Lipschitz function g : Rn → R

Eµ|g − Eµg| ≤
c6

ψµ1

‖|∇g|‖∞.

Thus,
ψµ ≥ c7ψµ1 ≥ c7Cn.

Remark 2.2. Let us point out that the same proof would work with any power of n larger
than 1

2
instead of n5.
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2.2 The general strategy

From now on, we will consider dµ(x) = f(x)dx to be an isotropic log-concave probability
measure such that suppµ ⊆ Cn5Bn

2 where C is the absolute constant in Lemma 2.1. Let
us recall that we consider Lee & Vempala’s choice in the system of stochastic differential
equations in Eldan’s localization scheme. That is,

(2) dct = btdt+ dWt, c0 = 0

whereWt a n-dimensional Wiener process and bt is the barycenter of the density ft(x) given
by

(3) ft(x) =
e〈ct,x〉−

t
2
|x|2f(x)∫

Rn e
〈ct,x〉− t

2
|x|2f(x)dx

bt =

∫
Rn

xft(x)dx.

The probability measure with density ft(x) will be denoted by µt and its covariance matrix
will be denoted by At.

Let us recall that, given µ an isotropic log-concave probability, our goal is to find two
values Θ, C > 0 such that for any Borel set E ⊆ Rn with µ(E) = 1/2.

µ(EΘ \ E) ≥ C,

where EΘ = {e + x ∈ Rn : e ∈ E, |x| < Θ} is the Θ-dilation of E, in order to apply the
following proposition, which can be found on [AB2, Proposition 2.3]:

Proposition 2.3 ([M]). Let µ be a log-concave probability on Rn. Assume that there exist
two positive numbers Θ, C > 0 such that

µ(EΘ \ E) ≥ C

for any Borel set E ∈ Rn such that µ(E) = 1
2
. Then,

µ+(A) ≥ C

Θ
min{µ(A), µ(Ac)} for any Borel set A ⊂ Rn.

In order to control the probability of dilations of Borel sets, the following concentration
results for more log-concave than Gaussian probabilities (see [AB2, Proposition 2.4]) can
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be applied

Proposition 2.4. Let φ be a convex function φ : Rn → R and let t > 0. Assume that

dµ(x) = e−φ(x)− t
2
|x|2dx,

is a centered probability on Rn. Then for every Borel set A ⊂ Rn such that

1

10
≤ µ(A) ≤ 9

10

we have
µ
(
A

D√
t

)
≥ 95

100
,

where D > 0 is a suitably chosen absolute constant independent of every other parameter
and AD/

√
t is the D/

√
t-dilation of A.

Remark 2.5. Notice that, due to the fact that

dµt(x) =
e〈ct,x〉−

t
2
|x|2f(x)dx∫

Rn e
〈ct,x〉− t

2
|x|2f(x)dx

is more log-concave than the Gaussian probability, as a trivial application of both proposi-
tions,

µ+
t (A) ≥ c1

√
tmin{µt(A), µt(A

c)}, for any Borel set A ⊂ Rn,

where, a fortiori, 0 < c1 < 1 is an absolute constant.

In the sequel E will denote a fixed Borel set in Rn such that µ(E) = 1/2. We introduce
the stochastic process

gE(t) = g(t) = µt(E) =

∫
E

ft(x)dx, t ≥ 0,

where µt and ft(x) are defined by the system of stochastic differential equations (2) and by
(3). It is obvious that g(0) = 1/2, ∀ω ∈ Ω, since f0(x) = f(x) for every ω ∈ Ω. Besides,
(g(t))t≥0 is a martingale (see [AB2, Section 4]) and for every t ≥ 0 the expected value of
g(t) is EPg(t) = 1/2.

Let T > 0 be a time to be precised later and notice that for any Θ > 0, since also
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(gEΘ\E(t))t≥0 is a martingale,

µ(EΘ \ E) =

∫
EΘ\E

f(x)dx =

∫
EΘ\E

EPfT (x)dx

= EP

∫
EΘ\E

fT (x)dx = EPµT (EΘ \ E).

In order to apply the preceding propositions we will consider the event

G = {ω ∈ Ω : |g(T )− 1/2| ≤ 1/4}.

By Proposition 2.4 and the way that the densities ft are defined, we will have that there
exists some absolute constant D > 0 such that for ω ∈ G we will have µT (ED/

√
T ) ≥ 0.95

and therefore, by Markov’s inequality,

µ(ED/
√
T \ E) = EPµT (ED/

√
T \ E) ≥ (0.95− 0.5)P(G) =

9

20
P(G).

Hence, if we find T,C1 > 0 independent of E such that P(G) > C1 then we will get that

µ+(A) ≥ C1

√
T

D
min{µ(A), µ(Ac)} ∀A Borel set ⊂ Rn.

2.3 Estimating the probability of G

In order to bound from below P{|g(T ) − 1/2| ≤ 1/4} by a positive absolute constant, for
a particular choice of a time T , we recall that, as obtained in [AB2, Section 4],

g(T )− 1

2
= g(T )− g(0) =

∫ T

0

dg(t) =

∫ T

0

〈ηt, dWt〉

where ηt =

∫
E

ft(x)(x− bt)dx, being ft the density of the probability measure µt defined

in (3).
The function g(t) is a martingale and so, by Dambis, Dubins-Schwarz theorem, [AB2,

Proposition 2.7], we have that in distribution

g(T )− g(0) = W̄[g]T ,
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where W̄s is a Wiener process and [g]T is the quadratic variation of g, which is,

[g]T =

∫ T

0

|ηt|2dt.

Hence, for any M > 0,

P{|g(T )− 1/2| > 1/4} = P{|W̄[g]T | > 1/4} ≤ P{[g]T > M}+ P
{

max
0≤t≤M

|W̄t| >
1

4

}
.

We will bound both summands from above for an appropriate choice of M . Taking into
account that for every t ≥ 0

|ηt| =
〈
ηt,

ηt
|ηt|

〉
=

∫
E

ft(x)

〈
(x− bt),

ηt
|ηt|

〉
dx

≤

√
Eµt
〈

(x− bt),
ηt
|ηt|

〉2

=

√〈
At

ηt
|ηt|

,
ηt
|ηt|

〉
≤
√
‖At‖op,

we have that
[g]T ≤

∫ T

0

‖At‖op dt

and then

(4) P{[g]T > M} ≤ P
{∫ T

0

‖At‖op dt > M

}
.

On the other hand,
(
−W̄t

)
t≥0

is also a Brownian motion and then, by the reflection
principle, [AB2, Proposition 2.6], we have

P
{

max
0≤t≤M

|W̄t| >
1

4

}
≤ P

{
max

0≤t≤M
W̄t >

1

4

}
+ P

{
max

0≤t≤M
−W̄t >

1

4

}
= 4P

{
W̄M >

1

4

}
≤ 4 exp

(
− 1

32M

)
.

(5)

Hence

P{|g(T )− 1/2| > 1/4} ≤ P
{∫ T

0

‖At‖op dt > M

}
+ 4 exp

(
− 1

32M

)
.

146



Our purpose is to find a suitable M > 0 and T > 0 such that we can ensure that
the latter upper bound on the probability of Gc is strictly smaller than 1. We will take
M = 1/256. Then

P{|g(T )− 1/2| > 1/4} ≤ P
{∫ T

0

‖At‖op dt >
1

256

}
+ 4 exp (−8)

and, by showing that for an appropriate choice of T the latter probability is bounded above
by 1

10
, we will obtain the desired lower bound on the probability of G.

3 Chen’s estimate on ‖At‖op

Let us recall that the main result, which allowed to obtain Theorem 1.1 by following the
described strategy, was the following:

Proposition 3.1. [AB2, Proposition 5.1] Given the system of stochastic differential equa-
tions (2), let At be the covariance matrix of the measure µt defined by (3). Let p ≥ 2 be an
integer. Then

d(Tr(Apt )) = δtdt+ 〈vt, dWt〉

where δt is an adapted, with bounded variation process, such that

δt ≤

{
C p2σ2

n log nTr(Apt )
1+ 1

p , if p ≥ 3

CTr(A2
t )

3/2, if p = 2

and
|vt| ≤ CpTr(Apt )

1+ 1
2p ∀p ≥ 2,

where C > 0 is an absolute constant and σ2
n = supE

∣∣|X| − √n∣∣2 and the sup runs over all
isotropic log-concave random vectors in Rn.

In this section we present Chen’s improvement on Proposition 3.1 and some conse-
quences on the estimates of ‖At‖op.

Proposition 3.2. Given the system of stochastic differential equations (2), let At be the
covariance matrix of the measure µt defined by (3). Let p ≥ 3 be an integer. Then

d(Tr(Apt )) = δtdt+ 〈vt, dWt〉
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where δt is an adapted, with bounded variation process, such that

δt ≤ Cp2Tr(Apt ) min

{
1

t
,
‖At‖op
ψ2
n

}
, |vt| ≤ CpTr(Apt )

1+ 1
2p ,

where C > 0 is an absolute constant and ψn is defined as in Theorem 1.1.

Proof. The estimate for |vt| is the same appearing in Proposition 3.1. We will follow the
ideas appearing in [K] in order to estimate δt. Let us recall that, after Lee & Vempala’s
result collected in Theorem 1.1, we know that ψn ≥ C

n1/4 for some absolute constant C and
that one trivially has ψn ≤ C for another absolute constant C.

According to the proof of Proposition 3.1,

δt ≤
1

2
p(p− 1)

n∑
i=1

(αii)
p−2|ξii|2 +

∑
i 6=j

0≤k≤p−2

(αii)
k(αjj)

p−k−2|ξij|2

≤ 1

2
p(p− 1)

n∑
i=1

(αii)
p−2|ξii|2 + 2

∑
i 6=j

0≤k≤p−2

(αii)
p−2|ξij|2

≤ p(p− 1)
n∑
i=1

(αii)
p−2|ξii|2 + p(p− 1)

∑
i<j

(αii)
p−2|ξij|2

≤ p(p− 1)
n∑

i,j=1

(αii)
p−2|ξij|2,

where (vi)
n
i=1 is an orthonormal basis of eigenvectors of the covariance matrix At, αij =

αij(t) = 〈Atvi, vj〉, ordered in such a way that α11 ≥ α22 ≥ · · · ≥ αnn, and ξij are the
vectors ξij = ξi,j(t) = Eµt〈x− bt, vi〉〈x− bt, vj〉(x− bt) ∈ Rn.

Let, for any 1 ≤ i ≤ n, ξi be the symmetric matrix

ξi = Eµt〈x− bt, vi〉(x− bt)⊗ (x− bt).

Then,

Tr(ξ2
i ) =

n∑
j,k=1

(Eµt〈x− bt, vi〉〈x− bt, vj〉〈x− bt, vk〉)
2 =

n∑
j=1

|ξij|2.
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Therefore,

δt ≤ p(p− 1)
n∑
i=1

(αii)
p−2Tr(ξ2

i ).

Furthermore, since

ξ2
i = ξi ◦ Eµt〈x− bt, vi〉(x− bt)⊗ (x− bt) = Eµt〈x− bt, vi〉(x− bt)⊗ ξi(x− bt)

and, for every 1 ≤ i ≤ n, Eµt〈x− bt, vi〉 = 0 we have that

Tr(ξ2
i ) = Eµt〈x− bt, vi〉〈x− bt, ξi(x− bt)〉

= Eµt〈x− bt, vi〉 (〈x− bt, ξi(x− bt)〉 − Eµt〈y − bt, ξi(y − bt)〉)

≤ (by Cauchy-Schwarz inequality)

≤
√
αii

√
Varµt〈x− bt, ξi(x− bt)〉.

Taking into account the well-known relationship of Cheeger-type isoperimetric inequalities
with Poincare’s inequality (see, for instance, [AB1, Theorems 1.1 and 1.8]) we have that
for any locally Lipschitz integrable function g and any log-concave probability µ in Rn

Varµg ≤
C‖Covµ‖op

ψ2
n

Eµ|∇g|2

for some absolute constant C > 0. Besides, by Remark 2.5, for any locally Lipschitz
integrable function g

Varµt(g) ≤ C

t
Eµt|∇g|2.

Therefore,

Varµt〈x− bt, ξi(x− bt)〉 ≤ Cmin
{

1

t
,
‖At‖op

ψ2
n

}
Eµt |∇〈x− bt, ξi(x− bt)〉|

2 .

Since
∇〈x− bt, ξi(x− bt)〉 = (ξi + ξti)(x− bt) = 2ξi(x− bt),
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we have that

Tr(ξ2
i ) ≤ C

√
αii

√
min

{
1

t
,
‖At‖op

ψ2
n

}√
Eµt |ξi(x− bt)|2

≤ C
√
αii

√
min

{
1

t
,
‖At‖op

ψ2
n

}√
Tr(Atξ2

i ).

Hence,

n∑
i=1

(αii)
p−2Tr(ξ2

i ) ≤ C

√
min

{
1

t
,
‖At‖op

ψ2
n

} n∑
i=1

α
p−3/2
ii

√
Tr(Atξ2

i )

≤ (by Cauchy-Schwarz inequality)

≤ C

√
min

{
1

t
,
‖At‖op

ψ2
n

}√√√√ n∑
i=1

αpii

√√√√ n∑
i=1

αp−3
ii Tr(Atξ2

i )

= C

√
min

{
1

t
,
‖At‖op

ψ2
n

}√
Tr(Apt )

√√√√ n∑
i=1

αp−3
ii Tr(Atξ2

i ).

Now, since the matrix At is diagonal in the basis (vj)
n
j=1 and the entry (ξ2

i )jj of the
matrix ξ2

i is

(ξ2
i )jj =

n∑
k=1

(
Eµt〈x− bt, vi〉〈x− bt, vj〉〈x− bt, vk〉

)2
= |ξij|2,

we have that

n∑
i=1

αp−3
ii Tr(Atξ2

i ) =
n∑

i,j=1

αp−3
ii αjj(ξ

2
i )jj =

n∑
i,j=1

αp−3
ii αjj|ξij|2.

For every 1 ≤ i, j ≤ n we have that αp−3
ii αjj ≤ max{αp−2

ii , αp−2
jj } ≤ αp−2

ii + αp−2
jj . Thus,

n∑
i=1

αp−3
ii Tr(Atξ2

i ) ≤
n∑

i,j=1

αp−2
ii |ξij|2 +

n∑
i,j=1

αp−2
jj |ξij|2 = 2

n∑
i,j=1

αp−2
ii |ξij|2 = 2

n∑
i=1

αp−2
ii Tr(ξ2

i )
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and then

n∑
i=1

(αii)
p−2Tr(ξ2

i ) ≤ C

√
min

{
1

t
,
‖At‖op

ψ2
n

}√
Tr(Apt )

√√√√ n∑
i=1

αp−2
ii Tr(ξ2

i ),

where C is an absolute constant. Therefore,

n∑
i=1

(αii)
p−2Tr(ξ2

i ) ≤ Cmin
{

1

t
,
‖At‖op

ψ2
n

}
Tr(Apt )

and

δt ≤ p(p− 1)
n∑
i=1

(αii)
p−2Tr(ξ2

i ) ≤ Cp2min
{

1

t
,
‖At‖op

ψ2
n

}
Tr(Apt ),

where C is an absolute constant.

Proposition 3.3. There exists an absolute constant c > 0 and n0 ∈ N such that if T0 :=
cψ2

n

log n
, then for every p ≥ 3 and every n ≥ n0, we have

max
t∈[0,T0]

EP‖At‖op ≤ 3 and max
t∈[0,T0]

EP(Tr(Apt ))
1/p ≤ 3n1/p.

Proof. First of all notice that, since ψn is bounded from above by an absolute constant, we

can choose an absolute 0 < c1 < 1/2 and take T0 :=
c1ψ

2
n

402C log n
, where C is the constant

appearing in Proposition 3.2.
Let us consider the stopping time τ(ω) = inf

{
t > 0; ‖At‖op ≥ 2

}
. It is clear that, by

continuity, for ω ∈ Ω and t ≤ τ(ω), ‖At‖op ≤ 2. We define the following stochastic process
Xt(ω) = Tr(Apmin{t,τ(ω)}). It is an Itô process. Indeed, dXt = δ̄tdt+ 〈v̄t, dWt〉 where

δ̄t =

{
δt if t < τ(ω)

0, otherwise
and v̄t =

{
vt if t < τ(ω)

0, otherwise .

If 0 ≤ t < τ(ω),

δ̄t = δt ≤ Cp2 2

ψ2
n

Tr(Apt ) = Cp2 2

ψ2
n

Xt.

Since the latter inequality is trivially true if t ≥ τ(ω) we have that it holds for every t > 0.
It is clear that the stochastic process given by Zt =

∫ t
0
〈v̄s, dWs〉 is a martingale and
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then EPZt = 0. Hence the deterministic function EPXt verifies

d

dt
EPXt ≤ Cp2 2

ψ2
n

EPXt, a.e. t > 0.

Then, taking into account that EPX0 = n and that 0 < c1 <
1
2
, we have that for every

t ∈ [0, T0]

EPXt ≤ n exp

(
2Cp2

ψ2
n

T0

)
≤ n exp

(
p2

402 log n

)
Optimizing for p = [40 log n] we obtain

EPXt ≤ n exp(log n) = n2 ∀t ∈ [0, T0].

Therefore, since for this value of p and n ≥ 3

Xτ(ω) = Tr(A[40 logn]
τ(ω) ) ≥ ‖Aτ(ω)‖30 logn

op = 230 logn, ∀t ∈ [0, T0]

we achieve, using Markov’s inequality, that for every t ∈ [0, T0]

n2 ≥ EPXt ≥
∫
{ω: t>τ(ω)}

XtdP =

∫
{ω: t>τ(ω)}

Xτ(ω)dP ≥ 230 lognP
{
ω : t > τ(ω)

}
and then

P
{
ω : t > τ(ω)

}
≤ n2

n30 log 2
, ∀t ∈ [0, T0].

Then, for every n ≥ n0, for some n0 ∈ N

EP‖At‖op ≤ C1
n12

n30 log 2
+ 2 ≤ 3 ∀t ∈ [0, T0],

where we have used that, since we are assuming (as mentioned in Section 2.2) that suppµ ⊆
Cn5Bn

2 ,

‖At‖op = sup
θ

Eµt〈x− bt, θ〉2 ≤ 4
(
diameter(supp µt)

)2
= 4
(
diameter(supp µ)

)2 ≤ C1n
10.

Besides, since for any p ≥ 3,

‖At‖op ≤ (Tr(Apt )
)1/p ≤ ‖At‖opn

1/p
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we have that
EP(Tr(Apt )

)1/p ≤ 3n1/p ∀t ∈ [0, T0].

Lemma 3.4. Let T0 = c
ψ2
n

log n
as in Proposition 3.3. Let T1, T2 > 0 be such that 0 < T1 ≤ T0

and 0 < T1 ≤ T2. Then, for every p ≥ 3 and n ≥ n0, for some n0 ∈ N, we have that

P
{∫ T1

0

‖At‖opdt ≥
1

512

}
≤ 1536T1

and

P
{∫ T2

T1

‖At‖opdt ≥
1

512

}
≤ 1536n1/p

(
T2

T1

)Cp
T2.

Proof. By Markov’s inequality, since T1 < T0 and, as seen in Proposition 3.3, EP‖At‖op ≤ 3

for every t ∈ [0, T0],

P
{∫ T1

0

‖At‖opdt ≥
1

512

}
≤ 512EP

∫ T1

0

‖At‖opdt = 512

∫ T1

0

EP‖At‖opdt ≤ 1536T1.

Consider the stochastic process Ht =
(
Tr(Apt ))1/p which is an Itô process. Therefore,

by Itô’s formula,

dHt =
1

p

(
Tr(Apt ))

1/p−1d
(
Tr(Apt )) +

1

2p

(
1

p
− 1

)(
Tr(Apt ))

1/p−2d[Tr(Apt )]t = ηtdt+ dMt,

where, by Proposition 3.2, dMt is a martingale with M0 = 0 and ηt is an adapted process
such that ηt ≤ C p

t
Ht. Taking expectation we have

d

dt
EPHt ≤ C

p

t
EPHt ⇔

d

dt
log (EPHt) ≤ C

p

t
.

Integrating in the interval [T1, t] ⊆ [T1, T2] we deduce that for any T1 < t < T2

EPHt ≤ EPHT1

(
t

T1

)Cp
.

Taking into account that, by Proposition 3.3, EPHT1 ≤ 3n1/p, for any value of p ≥ 3, we
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obtain

EP

∫ T2

T1

‖At‖opdt ≤ EP

∫ T2

T1

Htdt =

∫ T2

T1

EPHtdt ≤ 3n1/p

∫ T2

T1

(
t

T1

)Cp
dt ≤ 3n1/p

(
T2

T1

)Cp
T2.

Hence, by Markov’s inequality,

P
{∫ T1

T0

‖At‖opdt ≥
1

512

}
≤ 512EP

∫ T2

T1

‖At‖opdt ≤ 1536n1/p

(
T2

T1

)Cp
T2.

4 Proof of Chen’s Theorem

In this section we complete the proof of Chen’s estimate of ψn.

Proof of Theorem 1.2. Let T0 = c
ψ2
n

log n
for some absolute constant c, as in Proposition 3.3

and let T1 = T0, p =

√
log n

log log n
, and T2 = αn−

1
p(Cp+1)T

Cp
Cp+1

0 for this fixed value of p and

some 0 < α < 1 to be precised later.
There are two possibilities: either T2 ≤ T0 or T2 > T0. Assume first that T2 ≤ T0.

According to Lemma 3.4, and taking into account that ψn ≤ C for some positive absolute
constant C, we have that

P
{∫ T2

0

‖At‖opdt ≥
1

256

}
≤ P

{∫ T2

0

‖At‖opdt ≥
1

512

}
≤ 1536T2

≤ 1536T0 ≤
1536cψ2

n

log n
≤ 1

10

for every n > n0, for some n0 ∈ N.
Assume now that T2 > T0. By Lemma 3.4, and taking into account that 1 + x ≤ 2x
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whenever x ≥ 1, we have

P
{∫ T2

0

‖At‖opdt ≥
1

256

}
≤ P

{∫ T0

0

‖At‖opdt ≥
1

512

}
+ P

{∫ T2

T0

‖At‖opdt ≥
1

512

}
≤ 1536

(
T0 + n1/p

(
T2

T0

)Cp
T2,

)
=1536T0

(
1 + n1/p

(
T2

T0

)Cp+1
)

≤ 3072T0 n
1/p

(
T2

T0

)Cp+1

= 3072αCp+1 <
1

10

whenever n > n1, for some n1 ∈ N, by choosing 0 < α < 1 small enough.
Therefore, we can fix 0 < α < 1 such that there exists n0 such that if n ≥ n0

P
{∫ T2

0

‖At‖opdt ≥
1

256

}
≤ 1

10
.

By the arguments exposed in Section 2, we have that there exists an absolute constant
c1 > 0 such that

ψµ ≥ c1

√
T2 ≥ c2

√
αn−

1
2p(Cp+1)T

Cp
2(Cp+1)

0 = c3

√
αn−

1
2p(Cp+1)

ψ
Cp

Cp+1
n

(log n)
Cp

2(Cp+1)

.

Since this inequality is true for any isotropic log-concave probability whose support is
contained in C1n

5Bn
2 , where C1 is the absolute constant in Lemma 2.1, we obtain that

ψn ≥ c4

√
αn−

1
2p(Cp+1)

ψ
Cp

Cp+1
n

(log n)
Cp

2(Cp+1)

and then

ψn ≥
(
c4

√
α
)Cp+1 n−

1
2p

(log n)
Cp
2

= c5 exp
(
− c6

√
log n · log log n

)
,

which finishes the proof.
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